Common Tasks With P3 Scripts

Here we present examples of common tasks and show how to accomplish them with the command-line interface

Working with Taxonomic Groupings

List Roles that are Found in One Species but not Another

For our example, we will compare Vibrio campbellii with Vibrio alginolyticus.

To answer this question, we need a file of roles from Vibrio alginolyticus and use it to filter out roles from Vibrio campbellii. The following pipe gets all the roles from Vibrio alginolyticus genomes and puts them in the file aRoles.tbl.

p3-all-genomes --eq "genome_name,Vibrio alginolyticus" | p3-get-genome-features --attr product | p3-function-to-role | p3-sort --count feature.role >aRoles.tbl

There are a lot of pieces to this pipe. First, p3-all-genomes gets all the genome IDs for Vibrio alginolyticus. Then p3-get-genome-features finds all the features for those genomes and outputs the functional assignment (product). p3-function-to-role converts the functions to roles and eliminates the hypotheticals. Finally, p3-sort with the --count option counts the number of occurrences of each role. It takes a while, but the output looks something like this.

feature.role    count
(2E,6E)-farnesyl diphosphate synthase (EC 2.5.1.10) 34
(3R)-hydroxymyristoyl-[ACP] dehydratase (EC 4.2.1.-)    34
1,4-alpha-glucan (glycogen) branching enzyme, GH-13-type (EC 2.4.1.18)  37
1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 34
1,4-dihydroxy-2-naphthoate polyprenyltransferase (EC 2.5.1.74)  34
1,4-dihydroxy-2-naphthoyl-CoA hydrolase (EC 3.1.2.28) in menaquinone biosynthesis   34
1,6-anhydro-N-acetylmuramyl-L-alanine amidase   35
1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC 1.1.1.267)  34
1-deoxy-D-xylulose 5-phosphate synthase (EC 2.2.1.7)    35
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (EC 1.17.7.1)   38
1-phosphofructokinase (EC 2.7.1.56) 34

Now we perform the same exercise with Vibrio campbellii.

p3-all-genomes --eq "genome_name,Vibrio campbellii" | p3-get-genome-features --attr product | p3-function-to-role | p3-sort --count feature.role >cRoles.tbl
feature.role    count
(2E,6E)-farnesyl diphosphate synthase (EC 2.5.1.10) 25
1,4-alpha-glucan (glycogen) branching enzyme, GH-13-type (EC 2.4.1.18)  27
1,4-alpha-glucan branching enzyme (EC 2.4.1.18) 25
1,4-dihydroxy-2-naphthoate polyprenyltransferase (EC 2.5.1.74)  27
1,4-dihydroxy-2-naphthoyl-CoA hydrolase (EC 3.1.2.28) in menaquinone biosynthesis   28
1,6-anhydro-N-acetylmuramyl-L-alanine amidase   25
1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC 1.1.1.267)  30
1-deoxy-D-xylulose 5-phosphate synthase (EC 2.2.1.7)    27
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (EC 1.17.7.1)   26
1-phosphofructokinase (EC 2.7.1.56) 33
16 kDa heat shock protein A 25

Now we filter cRoles.tbl by removing records that match aRoles.tbl. Note that we are matching on the key column ONLY. We don’t care about the counts, only which roles are in campbellii but not alginolyticus. The p3-file-filter command performs this task.

p3-file-filter --reverse --col=feature.role aRoles.tbl <cRoles.tbl

The --reverse option tells us we want roles that are in the standard input file (cRoles.tbl) but not the filter file (aRoles.tbl). The --col option tells us we are comparing values in the feature.role column. Both files are the same format; if the formats were different, we could specify a different key column identifier for the filter file by appending it as a positional parameter. So, another way to code the same thing would be

p3-file-filter --reverse --col=feature.role aRoles.tbl feature.role <cRoles.tbl

The output looks something like this

feature.role    count
2,3-dihydroxybenzoate-AMP ligase (EC 2.7.7.58) of siderophore biosynthesis  33
2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase (EC 1.14.13.-)  1
2-pyrone-4,6-dicarboxylic acid hydrolase (EC 3.1.1.57)  14
23S ribosomal RNA rRNA prediction is too short  1
3-polyprenyl-4-hydroxybenzoate carboxy-lyase UbiX (EC 4.1.1.-)  1
4-amino-4-deoxy-L-arabinose transferase 26
4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase    17
4-carboxy-4-hydroxy-2-oxoadipate aldolase (EC 4.1.3.17) 16
4-hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)  7
4-oxalmesaconate hydratase (EC 4.2.1.83)    14
4-oxalocrotonate tautomerase    1

Compute How Many Genomes we have in a Particular Genus

For Streptococcus:

p3-all-genomes --equal genus,Streptococcus --count
genome.count
11836

Note the use of the --count command-line option to produce a count of the results instead of the results themselves.

List the Genomes we have in a Particular Genus

For Streptococcus:

p3-all-genomes --equal genus,Streptococcus --attr genome_name
genome.genome_id    genome.genome_name
1302.21 Streptococcus gordonii strain DD07
1303.76 Streptococcus oralis strain DD05
1303.77 Streptococcus oralis strain DD14
1303.78 Streptococcus oralis strain DD15
1303.79 Streptococcus oralis strain DD16
1303.80 Streptococcus oralis strain DD20
1303.81 Streptococcus oralis strain DD21
1303.82 Streptococcus oralis strain DD27
1303.83 Streptococcus oralis strain DD30

p3-all-genomes always includes the ID, so all we need for the --attr parameter is the name field. If you intend to pipe the results into another script, specify the attributes in the order you want them to appear.

p3-all-genomes --equal genus,Streptococcus --attr genome_name --attr genome_id
genome.genome_name  genome.genome_id
Streptococcus gordonii strain DD07  1302.21
Streptococcus oralis strain DD05    1303.76
Streptococcus oralis strain DD14    1303.77
Streptococcus oralis strain DD15    1303.78
Streptococcus oralis strain DD16    1303.79
Streptococcus oralis strain DD20    1303.80
Streptococcus oralis strain DD21    1303.81
Streptococcus oralis strain DD27    1303.82
Streptococcus oralis strain DD30    1303.83

Compute the Fraction of the Genomes in a Genus that are Resistant to a Particular Drug

In our example, we will look for Staphylococcus genomes resistant to methicillin.

This is a two-step process, since we need two numbers– the total number of Staphylococcus genomes and the number that are methicillin-resistant.

p3-all-genomes --equal genome_name,Staphylococcus --count

We isolate the genus by doing a string match on the genome name, since equality for string fields matches if the value is a substring. We could also use --equal genus,Staphylococcus and get an equivalent result.

genome.count
10716

To get the count of resistant genomes, we need to pipe the drug name into p3-get-drug-genomes. Here we don’t have the option of using the genus field, since only the genome name is present in the drug-genome records, not the entire taxonomy.

p3-echo -t antibiotic methicillin | p3-get-drug-genomes --resistant --equal genome_name,Staphylococcus --count
antibiotic   genome_drug.count
methicillin  1064

The answer is 1064 * 100 / 10716 or 9.93%.

Working with Genomes

Find a Genome from an Accession Number or Project ID

Genomes in BV-BRC are stored with four alternate IDs, any of which can be used to search for the genomes.

  1. ncbi_project_id. The NCBI project number

  2. refseq_project_id. The REFSEQ project number

  3. genbank_accessions. The accession string from GENBANK

  4. refseq_accessions. The accession string from REFSEQ

The following commands all return the genome Streptococcus mutans UA159.

p3-all-genomes --eq genbank_accessions,AE014133
p3-all-genomes --eq refseq_accessions,NC_004350
p3-all-genomes --eq ncbi_project_id,333
p3-all-genomes --eq refseq_project_id,57947

Because no attributes were specified, the output in each case is solely the genome ID, a single output record in a single column.

genome.genome_id
210007.7

Given a Genome ID, Find the Name

The genome name is in an attribute called genome_name. You can get it from the genome ID using p3-all-genomes as shown here.

p3-all-genomes --eq genome_id,210007.7 --attr genome_name
genome.genome_id    genome.genome_name
210007.7    Streptococcus mutans UA159

Alternatively, you can use p3-get-genome-data and use p3-echo to pipe in the ID.

p3-echo 210007.7 | p3-get-genome-data --attr genome_name
id  genome.genome_name
210007.7    Streptococcus mutans UA159

Find a Gene by Name in a Particular Genome

Here you want to use p3-find-features with a genome_id filter.

p3-echo coaA | p3-find-features --attr patric_id,product --eq genome_id,210007.7 gene
id  feature.patric_id   feature.product
coaA    fig|210007.7.peg.1009   Pantothenate kinase (EC 2.7.1.33)

Display the CDS and RNA features for A Genome Sorted by Location on the Chromosome

For the genome 1313.7001 (Streptococcus pneumoniae P210774-233).

p3-echo -t genome_id 1313.7001 | p3-get-genome-features --in feature_type,CDS,rna --attr patric_id --attr sequence_id --attr start --attr strand --attr product | p3-sort feature.sequence_id feature.start/n feature.strand

We start by using p3-echo to create a file that has our single genome ID in it. The bulk of the retrieval work is performed by p3-get-genome-features. The --in parameter allows us to specify a list of values for a specific field. In this case, we want feature_type to equal either CDS or rna. To sort by location, we need the contig ID (sequence_id) and the start location (start). The start location is always the leftmost location on the contig, so it is perfect for sorting. Finally, we add the strand (+ or i) and then the functional assignment (product) so we can see what the feature does. The p3-sort gets the file records in the proper order. Because one of the fields is numeric, we put a /n after the field name. This tells the sorter that for the feature.start column, the value 20 comes before, not after, the value 100. The output will look something like this.

genome_id   feature.patric_id   feature.sequence_id feature.start   feature.strand  feature.product
1313.7001   fig|1313.7001.peg.1 1313.7001.con.0001  40  -   Mobile element protein
1313.7001   fig|1313.7001.peg.2 1313.7001.con.0001  540 -   Mobile element protein
1313.7001   fig|1313.7001.peg.3 1313.7001.con.0001  994 -   Mobile element protein
1313.7001   fig|1313.7001.peg.4 1313.7001.con.0002  1   +   Streptococcal histidine triad protein
1313.7001   fig|1313.7001.peg.5 1313.7001.con.0003  1   +   Endo-beta-N-acetylglucosaminidase (EC 3.2.1.96)
1313.7001   fig|1313.7001.peg.6 1313.7001.con.0003  1120    -   Fibronectin/fibrinogen-binding protein
1313.7001   fig|1313.7001.peg.7 1313.7001.con.0003  2880    +   Metal-dependent hydrolase YbeY, involved in rRNA and/or ribosome maturation and assembly
1313.7001   fig|1313.7001.peg.8 1313.7001.con.0003  3358    +   Diacylglycerol kinase (EC 2.7.1.107)
1313.7001   fig|1313.7001.peg.9 1313.7001.con.0003  3770    +   GTP-binding protein Era
1313.7001   fig|1313.7001.peg.10    1313.7001.con.0003  4684    +   Formamidopyrimidine-DNA glycosylase (EC 3.2.2.23)
1313.7001   fig|1313.7001.peg.11    1313.7001.con.0003  5541    +   Dephospho-CoA kinase (EC 2.7.1.24)
1313.7001   fig|1313.7001.peg.12    1313.7001.con.0003  6133    +   Multidrug resistance efflux pump PmrA
1313.7001   fig|1313.7001.peg.13    1313.7001.con.0003  7521    +   Protein translocase membrane subunit SecG
1313.7001   fig|1313.7001.peg.14    1313.7001.con.0003  7856    +   3'-to-5' exoribonuclease RNase R
1313.7001   fig|1313.7001.peg.15    1313.7001.con.0003  10173   +   tmRNA-binding protein SmpB
1313.7001   fig|1313.7001.peg.16    1313.7001.con.0003  10656   +   Tellurite methyltransferase (EC 2.1.1.265)

Compute the Upstream Regions for the Protein-Encoding Genes in a Genome

For the genome 1313.7001 (Streptococcus pneumoniae P210774-233).

We get upstream regions from the p3-feature-upstream script, but to use it we need an input list of feature IDs. We will produce feature IDs and functional assignments, then append the upstream sequences.

p3-echo -t genome_id 1313.7001 | p3-get-genome-features --eq feature_type,CDS --attr patric_id --attr product | p3-feature-upstream --col=feature.patric_id

The -eq feature_type,CDS ensures we only see protein-encoding features. Because we are not putting the feature ID in the last column, we use --col=feature.patric_id to direct p3-feature-upstream to the correct input column. The output will look something like this. Note the upstream DNA is in the last column.

genome_id   feature.patric_id   feature.product upstream
1313.7001   fig|1313.7001.peg.1182  beta-glycosyl hydrolase      ttgtcatctcctcttgactctcgttaatataagaaataaaataagggcgttgatttatataatcgctatcaatataacaatgcaatcaggaggttttgca
1313.7001   fig|1313.7001.peg.1189  IMP cyclohydrolase (EC 3.5.4.10) / Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3)   gatcaatatcttaggtatgcttagccttggttttgcttatcttgttttactgttactgcatttaattggtgtttaactaatgattaaaaaggagaatata
1313.7001   fig|1313.7001.peg.1191  Phosphoribosylglycinamide formyltransferase (EC 2.1.2.2)      tcagccctgaaaatgtagagcgtgtaaaagaattgttggatgaagcagtctatgaaattggtcgcatcgtcaagaaagaaaacgaaagtgtcattatcaa
1313.7001   fig|1313.7001.peg.1192  Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1)   tctctatgactacgaagaagactatcgtagaagtttggaagaaaagaccagtttttacaagtaggcgacagattctccattaaagaaaaggaaaaaacaa
1313.7001   fig|1313.7001.peg.1199  hypothetical protein    aaggtggcggatgcaattggggagattttgccaaagcaggtgttggaggaggagctatacttggaggtgtggcctatgcagcgacatgttggtggtaatt
1313.7001   fig|1313.7001.peg.1211  hypothetical protein    ttggcgattaccaacaatggacaggaaaaccatctggttaagatggcattcttggaattaaaaaatacagagaaaccagcaaagacaaggttcgcaagcc
1313.7001   fig|1313.7001.peg.1259  Acetyl xylan esterase 1; Cephalosporin-C deacetylase (EC 3.1.1.41)  aaagaatctaaattcactttctatttacccttctttcttgcattgattacatagatatgctacagttgtggtaacgattacaaaataaaaggagcatgct
1313.7001   fig|1313.7001.peg.1278  Helicase loader DnaB    acgttttgctagtgtctatcgtagttttaaggatgtcagtgagttagagagcttgctccaacaaatcacccagtcctctaaaaagaaaaaggaaagataa
1313.7001   fig|1313.7001.peg.1288  Fructokinase (EC 2.7.1.4)   ttattagatagtaagatttacagaggaaaatctaaaaaatagagacatttagactttcgaagtatgctataataaagaaaataaaaacaagaggtttatc

You can use the --len parameter of p3-feature-upstream to change the number of base pairs displayed (the default is 100). If the feature is at the edge of the contig, you may see less than the specified length or even nothing at all, since the script stops at the contig boundary. To see downstream regions instead, use the --downstream option. This pipe shows the 10 base pairs downstream of each gene.

p3-echo -t genome_id 1313.7001 | p3-get-genome-features --eq feature_type,CDS --attr patric_id --attr product | p3-feature-upstream --col=feature.patric_id --downstream --len=10
genome_id   feature.patric_id   feature.product downstream
1313.7001   fig|1313.7001.peg.1182  beta-glycosyl hydrolase    gtcttttcga
1313.7001   fig|1313.7001.peg.1189  IMP cyclohydrolase (EC 3.5.4.10) / Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3)   gaagataaaa
1313.7001   fig|1313.7001.peg.1191  Phosphoribosylglycinamide formyltransferase (EC 2.1.2.2)    ctttttgatg
1313.7001   fig|1313.7001.peg.1192  Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1)     aaaaaatagc
1313.7001   fig|1313.7001.peg.1199  hypothetical protein    tcaaaactat
1313.7001   fig|1313.7001.peg.1211  hypothetical protein    tcaactacat
1313.7001   fig|1313.7001.peg.1259  Acetyl xylan esterase 1; Cephalosporin-C deacetylase (EC 3.1.1.41)  ggagtcgact
1313.7001   fig|1313.7001.peg.1278  Helicase loader DnaB    atggaaagtg

Compute the Codon Usage in a Genome

Our example genome is 186497.12 (Pyrococcus furiosus DSM 3638).

The p3-sequence-profile script counts the number of occurrences of each letter in a sequence field. To use it, we need to create a file that has the sequences we want to analyze in the last column. We start with the genome ID, then use p3-get-genome-features to get the feature data. The aa_sequence field contains the protein sequences, which are then processed by p3-sequence-profile.

p3-echo -t genome_id 186497.12 | p3-get-genome-features --attr aa_sequence | p3-sequence-profile

By default, p3-sequence-profile works on the last input column, which in this case is the amino acid sequence. The output will look something like this.

letter  count
L   58114
E   51852
I   50270
K   46874
V   45417
G   41210
A   38057
R   30791
S   28102
F   25399
T   25375
D   25340
P   24706
Y   23048
N   19998
M   12966
Q   10045
H   8653
W   7104
C   3359

Note that the output is sorted from most common to least. The same trick works for DNA sequences, which are in the na_sequence field.

p3-echo -t genome_id 186497.12 | p3-get-genome-features --attr na_sequence | p3-sequence-profile
letter  count
A   597286
T   465185
G   440197
C   305118

Extract a Fasta File of a Genome’s Contigs

Our example is 1302.21 (Streptococcus gordonii strain DD07).

p3-genome-fasta 1302.21
>1302.21.con.0001 contig
agctcagttggtagtagcgcatgactgttaatcatgatgtcgtaggttcgagtcctactg
ccggagttatatctataagtaagacaagaaattcttgtctttttatatttattgtgtttt
tgcaatttaatttttaagttcttatttaataaaaagcttgaagattattcttcaagcttt
ttatgtttattaaagaatgcttcatagagggctttaatagctgctttttcttgttcagag
tttactacgagcatgatagaaacttcgctagatccttgagagatcatttgaatattaatt
ttgctgtctgatagagcctttgtagccgtagcagtcagaccgatatgacttttcatttgc

List the Protein Sequences for the Genes in a Genome

Our example is 1302.21 (Streptococcus gordonii strain DD07).

p3-genome-fasta --protein 1302.21
>fig|1302.21.peg.966 putative Zn-dependent protease
MRFLLNLFRFIWRMFWRLVWAGIVAFIILVSVLYLTNPSQTGLTAVRQAVQTAVNQLDTF
LDQQGIHTGLGQNVQNLGEHLTDQHVASSDGARWENARATVYIETENSTFRAAYQEAIKS
WNATGAFTFQLVEDKSQANIIATEMNDSTITAAGEAESQTNVLTKRFTKVTVRLNAYYLL
NNYYGYSHERIVNTASHELGHAIGLDHNESESVMQSAGSFYSIQPIDIQAVKELYQD
>fig|1302.21.peg.969 Putative metallopeptidase (Zinc) SprT family
MNLNEYIKQVSLEDFGWEFRHQAFWNKRLRTTGGRFFPKDGHLDFNPKIYETFGLETFRK
IVRHELAHYHLYYQGKGYRHKDRDFKELLKQVGGLRYAPGLPAKKLKLHYQCRSCCTDFY
RQRRIEIKKYRCGRCKGKLRLLKQER

Given a List of Genomes, Produce a List of Pairs of Roles that are Implemented by Genes that are Close on the Chromosome, Sorted by Number of Occurrences

Here we assume our list of genomes is in the file genomes.tbl. The content of this file is shown below.

genome_id
1310696.14
66976.17
91890.5
316273.25
186497.12
1353158.3
135461.13
1173954.3
1176728.3

We use p3-get-genome-features to get the feature and location data, p3-function-to-role to convert the functions to roles, and p3-generate-close-roles to compute the physically close roles. Because we only want protein-encoding genes (pegs), we filter the genome features by type. (If we didn’t do this, the output would start with a whole bunch of generic roles involving ribosomes and CRISPR repeats.) The output is automatically sorted by decreasing number of occurrences.

p3-get-genome-features --eq feature_type,CDS --attr sequence_id --attr location --attr product <genomes.tbl | p3-function-to-role | p3-generate-close-roles
role1   role2   count
Transposase, IS3/IS911 family   Mobile element protein  33
Mobile element protein  Mobile element protein  29
Lead, cadmium, zinc and mercury transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5)   Copper-translocating P-type ATPase (EC 3.6.3.4) 25
Potassium efflux system KefA protein    Small-conductance mechanosensitive channel  13
Cobalt-zinc-cadmium resistance protein CzcA Cation efflux system protein CusA   13
Gamma-glutamyltranspeptidase (EC 2.3.2.2)   Glutathione hydrolase (EC 3.4.19.13)    13
Efflux ABC transporter, ATP-binding protein Efflux ABC transporter, permease protein    11

Note that the occurrence counts are shown in the last column of the output.

Extract the Genomes in a List that have GC Content Values Greater Than a Certain Percentage

For this exercise we will use the genomes.tbl file as input and look for a GC content over 60%.

genome_id
1310696.14
66976.17
91890.5
316273.25
186497.12
1353158.3
135461.13
1173954.3
1176728.3

The GC content percentage is found in the gc_content attribute, as shown in the example below (we use p3-sort to sort the results by the content percentage).

p3-get-genome-data --attr gc_content --attr genome_name <genomes.tbl | p3-sort gc_content/n
genome_id       genome.gc_content       genome.genome_name
91890.5 38.19   Legionella pneumophila subsp. pascullei strain D-7158
66976.17        38.28   Legionella pneumophila serogroup 1 strain Lp01_666
186497.12       40.8    Pyrococcus furiosus DSM 3638
1353158.3       43.41   Methanococcoides vulcani strain SLH 33
135461.13       43.88   Bacillus subtilis subsp. subtilis strain BSD-2
1173954.3       45.1    Vibrio parahaemolyticus O4:K12 str. K1203
1176728.3       50.67   Escherichia coli K71
316273.25       64.56   Xanthomonas campestris pv. vesicatoria str. 85-10

As you can see, there is only one genome in this set with a GC content over 60%. To get only that genome, we use the --gt parameter to filter for specific values of that field.

p3-get-genome-data --attr gc_content --attr genome_name --gt gc_content,60 <genomes.tbl
genome_id   genome.gc_content   genome.genome_name
316273.25   64.56   Xanthomonas campestris pv. vesicatoria str. 85-10

Compute how Close Two Features are on the Chromosome

We will ask this question for features fig|1302.21.peg.966 and fig|1302.21.peg.1019.

The script p3-feature-gap gives us this information. Since it expects two feature IDs on the same input line, we use a p3-echo with two titles to put its two parameters on a single line.

::

p3-echo -t f1.patric_id -t f2.patric_id “fig|1302.21.peg.966” “fig|1302.21.peg.1019” | p3-feature-gap

f1.patric_id    f2.patric_id    gap
fig|1302.21.peg.966 fig|1302.21.peg.1019    55253

Note that if the features are on different contigs, we get a very high number.

p3-echo -t f1.patric_id -t f2.patric_id "fig|1313.7001.peg.1159" "fig|1313.7001.peg.1384" | p3-feature-gap
f1.patric_id    f2.patric_id    gap
fig|1313.7001.peg.1159  fig|1313.7001.peg.1384  2000000000

The very high number makes it easier to simply compare the distance outputs from p3-feature-gap. Features on different contigs will always sort as further apart than features on the same contig.

List the Drugs to which a Genome is Resistant

The drug name is in the antibiotic attribute of the genome-drug table. We start with a genome ID and use p3-get-genome-drugs. Our example is genome 46170.310 (Staphylococcus aureus subsp. aureus strain VB4283.

p3-echo -t genome_id 46170.310 | p3-get-genome-drugs --resistant --attr antibiotic
genome_id   genome_drug.antibiotic
46170.310   ciprofloxacin
46170.310   erythromycin
46170.310   gentamicin
46170.310   methicillin
46170.310   penicillin
46170.310   trimethoprim/sulfamethoxazole

Working with Anti-Microbial Drugs

Find Genomes that are Resistant to a Particular Drug

Here we start with a drug name (our example is erythromycin) and use p3-get-drug-genomes to get the genome data.

p3-echo -t antibiotic erythromycin | p3-get-drug-genomes --resistant --attr genome_id --attr genome_name
antibiotic  genome_drug.genome_id   genome_drug.genome_name
erythromycin    1280.4920   Staphylococcus aureus P210110-35
erythromycin    1280.4930   Staphylococcus aureus P210184-226
erythromycin    1280.4940   Staphylococcus aureus P210369-10
erythromycin    1280.4960   Staphylococcus aureus P210464-28
erythromycin    1280.4970   Staphylococcus aureus P310372-198
erythromycin    1280.4990   Staphylococcus aureus P311202-207
erythromycin    1313.6942   Streptococcus pneumoniae P110340-157
erythromycin    1313.7001   Streptococcus pneumoniae P210774-233
erythromycin    1313.7002   Streptococcus pneumoniae P210824-213
erythromycin    1313.7006   Streptococcus pneumoniae P310010-154
erythromycin    1313.7013   Streptococcus pneumoniae P310795-191

Working with Protein Families

Compute the Average Length of Proteins in A Particular Family

If we had a file of protein family names with the amino acid length of each protein in the family, we can use the script p3-stats to output the mean length as well as the minimum, count, maximum, and standard deviation. The following pipe does the trick, using global family PGF_00112374 as an example.

p3-echo -t family PGF_00112374 | p3-get-family-features --ftype=global --attr aa_length | p3-stats --col=family feature.aa_length
family  count   average min max stdev
PGF_00112374    3414    818.125659050967    31  901 193.491091039707

The p3-echo command creates a one-line file with the family ID in it. We use p3-get-family-features to get all the features in this family. The --ftype=global parameter indicates that this is a global protein family (there are also families of type local and figfam). For each feature, we want the amino acid length. This value is stored in the aa_length attribute. Finally, we have p3-stats. The --col=family parameter tells us the input file records are to be grouped by the content of the family column. The positional feature.aa_length parameter tells us the numbers to analyze can be found in the aa_length column from the feature record. The output tells us there are 3414 pegs in the family. The average length is a little over 818 amino acids with a standard deviation of well over 193. The total range is 31 amino acids to 901 amino acids.

List the Genome and Feature ID for Each Feature in a Protein Family

The following pipe does the trick, using global family PGF_00112374 as an example.

p3-echo -t family PGF_00112374 | p3-get-family-features --ftype=global --attr genome_id,genome_name,patric_id
family  feature.genome_id       feature.genome_name     feature.patric_id
PGF_00112374    1311.851        Streptococcus agalactiae strain AB-22   fig|1311.851.peg.1591
PGF_00112374    1311.879        Streptococcus agalactiae strain BE-PW-162       fig|1311.879.peg.755
PGF_00112374    1311.871        Streptococcus agalactiae strain CZ-NI-016       fig|1311.871.peg.1197
PGF_00112374    1311.841        Streptococcus agalactiae strain AB-11   fig|1311.841.peg.728
PGF_00112374    1311.903        Streptococcus agalactiae strain ES-PW-083       fig|1311.903.peg.1321
PGF_00112374    1311.908        Streptococcus agalactiae strain GB-PW-024       fig|1311.908.peg.1397
PGF_00112374    1311.960        Streptococcus agalactiae strain DE-PW-196       fig|1311.960.peg.1275
PGF_00112374    1311.964        Streptococcus agalactiae strain IT-PW-086       fig|1311.964.peg.1518
PGF_00112374    1311.965        Streptococcus agalactiae strain IT-PW-097       fig|1311.965.peg.1342
PGF_00112374    1311.860        Streptococcus agalactiae strain AB-70   fig|1311.860.peg.746

Working with Features

Find the Global Protein Family Containing a Particular Feature

For fig|446170.310.peg.738:

p3-echo -t patric_id "fig|46170.310.peg.738" | p3-get-feature-data --attr pgfam_id

There are a couple of important things here. We use the pgfam_id field to get the global protein family (plfam_id would be used to get the local protein family). Also, the feature ID is enclosed in double quotes on the command line so that the vertical bar doesn’t confuse the command-line shell.

patric_id feature.pgfam_id
fig|46170.310.peg.738 PGF_00040464

Find the Function a Particular Feature implements

The function is stored in the feature table’s product attribute. We will use fig|46160.310.peg.738 as an example.

p3-echo -t patric_id "fig|46170.310.peg.738" | p3-get-feature-data --attr product
patric_id      feature.product
fig|46170.310.peg.738   Putative cysteine desulfurase, associated with tRNA 4-thiouridine synthase

Of course, you could ask this question of several features with a single pipe.

p3-echo -t patric_id "fig|46170.310.peg.738" "fig|1313.7001.peg.1189" "fig|66976.18.peg.131" | p3-get-feature-data --attr product
patric_id   feature.product
fig|46170.310.peg.738   Putative cysteine desulfurase, associated with tRNA 4-thiouridine synthase
fig|1313.7001.peg.1189  IMP cyclohydrolase (EC 3.5.4.10) / Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3)
fig|66976.18.peg.131    hypothetical protein

The p3-echo command uses the --title command-line option to determine how many parameters to put on each output line. Since our example has only one title, the output file has only a single column, and it can be easily piped to p3-get-feature-data.

Find a Feature from an Alternate Feature ID

Features in BV-BRC are stored with four alternate IDs, all of which are indexed for fast retrieval.

  1. gene. The common gene name (e.g. ciaR). Not all features will have a common gene ID

  2. gene_id. The gene number

  3. refseq_locus_tag. The locus tag from REFSEQ

The command p3-find-features is used to retrieve features based on an alternate ID. The alternate IDs are piped in through the standard input. Note that in some cases (e.g. the field gene), there may be a lot of features with the same ID. The following pipes return the ID and functional assignment using alternate IDs.

p3-echo coaA | p3-find-features --attr patric_id,product gene
id  feature.patric_id   feature.product
coaA    fig|996634.5.peg.916    Pantothenate kinase (EC 2.7.1.33)
coaA    fig|944560.4.peg.377    Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992133.3.peg.4201   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992141.3.peg.4166   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992132.3.peg.4176   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992136.3.peg.3951   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992139.3.peg.4173   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992131.3.peg.3905   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992142.3.peg.3915   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992137.3.peg.4122   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992135.3.peg.3895   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|99287.12.peg.4355   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|996306.3.peg.645    Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992175.3.peg.3998   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992179.3.peg.3888   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992177.3.peg.4127   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992178.3.peg.4122   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992180.3.peg.4094   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992172.3.peg.3873   Pantothenate kinase (EC 2.7.1.33)
coaA    fig|992181.3.peg.3864   Pantothenate kinase (EC 2.7.1.33)
p3-echo 1029377 | p3-find-features --attr patric_id,product gene_id
id  feature.patric_id   feature.product
1029377 fig|210007.7.peg.1009   Pantothenate kinase (EC 2.7.1.33)
id  feature.patric_id   feature.product
24379558    fig|210007.7.peg.1009   Pantothenate kinase (EC 2.7.1.33)
p3-echo SMU.1126 | p3-find-features --attr patric_id,product refseq_locus_tag
id  feature.patric_id   feature.product
SMU.1126    fig|210007.7.peg.1009   Pantothenate kinase (EC 2.7.1.33)

Given a Feature ID, Find the Amino Acid Sequence

The amino acid sequence is in the attribute aa_sequence. You use p3-get-feature-data to access it.

p3-echo "fig|210007.7.peg.1009" | p3-get-feature-data --attr aa_sequence
id  feature.aa_sequence
fig|210007.7.peg.1009   MANEFINFEKISRKTWQHLHQESQPPLNENELNSIKSLNDRISIKDVTDIYLPLISLIQIYKKSQENLSFSKSIFLQKNISNRPFIIGVSGSVAVGKSTTSRLLQLLLARTFKDSSVELMTTDGFLYPNAVLSSRHMLNKKGFPESYDMERLLDFLDTIKNGQSAEIPVYSHEIYDIVPNKSQIIEVPDFLIIEGINVFQNPQNNRLYMSDFFDFSIYIDADSDYIENWYLERFATLLDLAKNDKQNYYNRFLKLGEKGALDFARDIWKDINLVNLEKYIEPTRSRAELILHKTKNHKIDEIYLKK

Find How many Genomes have an Identical Protein to a Given Feature

The individual protein sequences are not indexed, but the BV-BRC database contains an MD5 signature for each protein that is indexed, in the feature attribute aa_sequence_md5. The following pipe finds out how many times the protein sequence for fig|210007.7.peg.1009 occurs in the database.

p3-echo "fig|210007.7.peg.1009" | p3-get-feature-data --attr aa_sequence_md5 | p3-find-features aa_sequence_md5 --count
id      feature.aa_sequence_md5 feature.count
fig|210007.7.peg.1009   6400069a6f7f32515c3a584ade0588d0        150

The answer is 150, but that is not quite the question that was asked. If the protein occurs more than once in a genome, then the above count will be too high. To get the correct answer we need to extract genome IDs and then count the number of distinct ones with p3-count.

p3-echo "fig|210007.7.peg.1009" | p3-get-feature-data --attr aa_sequence_md5 | p3-find-features aa_sequence_md5 --attr genome_id | p3-count genome_id
count
149

Given a Feature ID, Find the Features in the Same Protein Family

The family ID is in the pgfam_id attribute, and we use p3-get-family-features with the --ftype=global to find the other features.

p3-echo "fig|210007.7.peg.1009" | p3-get-feature-data --attr pgfam_id | p3-get-family-features --ne "patric_id,fig|210007.7" --ftype global --attr patric_id,genome_name,product

Note that we use the --ne operator to keep the original feature from appearing in the output. Even so, the resulting file has over 67,000 results, the first few of which are shown below.

id  feature.pgfam_id    feature.patric_id   feature.genome_name feature.product
fig|210007.7.peg.1009   PGF_00029921    fig|1341640.3.peg.2368  Yersinia sp. WP-930601  Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PGF_00029921    fig|1341642.3.peg.3368  Yersinia sp. WP-931205  Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PGF_00029921    fig|1344012.3.peg.2066  Tatumella sp. NML 06-3099   Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PGF_00029921    fig|984229.3.peg.2006   Salmonella enterica subsp. enterica serovar Enteritidis str. 653049 13-19   Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PGF_00029921    fig|984228.3.peg.4305   Salmonella enterica subsp. enterica serovar Enteritidis str. 648905 5-18    Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PGF_00029921    fig|984226.3.peg.4289   Salmonella enterica subsp. enterica serovar Enteritidis str. 648903 1-6 Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PGF_00029921    fig|984227.3.peg.3102   Salmonella enterica subsp. enterica serovar Enteritidis str. 648904 3-6 Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PGF_00029921    fig|984224.3.peg.642    Salmonella enterica subsp. enterica serovar Enteritidis str. 648901 39-2    Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PGF_00029921    fig|984225.3.peg.4221   Salmonella enterica subsp. enterica serovar Enteritidis str. 648902 6-8 Pantothenate kinase (EC 2.7.1.33)

Alternatively, you can use local protein families (plfam_id for the field name, and --ftype=local for the family type). This will restrict the output to features for genomes in the same genus.

p3-echo "fig|210007.7.peg.1009" | p3-get-feature-data --attr plfam_id | p3-get-family-features --ne "patric_id,fig|210007.7" --ftype local --attr patric_id,genome_name,product
id  feature.plfam_id    feature.patric_id   feature.genome_name feature.product
fig|210007.7.peg.1009   PLF_1301_00006228   fig|1579339.3.peg.1420  Streptococcus sp. 449_SSPC  Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|511691.3.peg.905    Streptococcus mutans NN2025 Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|1404260.3.peg.1014  Streptococcus mutans PKUSS-LG01 Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|1403829.3.peg.1035  Streptococcus mutans PKUSS-HG01 Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|857136.3.peg.247    Streptococcus mutans A19    Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|857135.3.peg.392    Streptococcus mutans U138   Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|857134.3.peg.201    Streptococcus mutans G123   Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|857133.3.peg.623    Streptococcus mutans M21    Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|857132.3.peg.561    Streptococcus mutans T4 Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|857138.3.peg.734    Streptococcus mutans N29    Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|857137.3.peg.82 Streptococcus mutans NMT4863    Pantothenate kinase (EC 2.7.1.33)
fig|210007.7.peg.1009   PLF_1301_00006228   fig|1313.8640.peg.2062  Streptococcus pneumoniae strain B16827  Pantothenate kinase (EC 2.7.1.33)